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Abstract
The dynamic request patterns of machine learning (ML)

inference workloads have driven an increasing trend towards
exploiting serverless computing for scalable ML model serv-
ing. However, today’s serverless platforms lack efficient sup-
port for GPUs — provisioning functions on GPUs incurs
extremely high overhead, forcing them to keep long-running
even when idling for reduced cold starts. This leads to signifi-
cant resource waste to perform ML inference and hinders the
pay-per-use billing for GPUs.

In this paper, we present FaaSwap, a serverless platform
enabling fine-grained, request-level GPU sharing for resource-
efficient ML inference. FaaSwap leverages model swapping
to support fast inference execution at low resource cost. It
keeps models in a host which has a large amount of cheap
memory and quickly swaps models to GPUs when requested,
reducing per-function keep-alive cost and enabling efficient
GPU sharing across much more functions. FaaSwap also sup-
ports swapping models between GPUs for load balancing
and improved inference performance. In FaaSwap, we design
sophisticated request scheduling and memory management
algorithms that efficiently exploit model swapping to reduce
GPU cost and meet latency service-level objectives (SLOs) for
all inference functions. We have implemented and integrated
FaaSwap into Alibaba Cloud Function Compute (FC), one
of the world’s largest commercial serverless platform. Eval-
uation results show that FaaSwap can achieve low-latency
model swapping, efficiently share a GPU across hundreds of
functions, and satisfy per-function latency SLOs at scale.

1 Introduction

Machine learning (ML) models have been increasingly de-
ployed in the cloud to deliver ML inference services and
boost real-world applications [17, 22, 32, 40, 41]. Model in-
ference is typically performed in real-time under dynamic,
bursty request arrival patterns, and thus needs to accommo-
date changing demands. Serverless computing offers a com-
pelling approach to enabling scalable model inference: users
can simply package models as stateless functions, let cloud
providers handle resource provisioning and autoscaling, and

be charged by per-request resource usage at a fine granular-
ity (e.g., 1 ms [5]). Mainstream serverless platforms, such as
AWS Lambda [5], Azure Functions [7] and Alibaba Cloud
Function Compute [1], have reported model inference as a
popular use case.

However, today’s serverless platforms lack efficient support
for GPUs, thus exposing a hard tradeoff between inference
performance and cost. Model inference typically has stringent
request-level latency service-level objectives (SLOs) such as
tens of milliseconds [32, 40, 41], while starting an inference
function on a GPU can take a few or tens of seconds (Table 1).
Therefore, one has to keep functions alive in GPUs for a long
duration, or even use provisioned instances [4, 6], to avoid
cold starts and meet strict latency requirements, the practice
of which is costly and violates the pay-per-use billing of
serverless computing. In addition, inference requests can be
highly dynamic [31, 40], therefore the long-running functions
are often idle, leading to significant waste of expensive GPU
resources.

An ideal serverless platform should allow fine-grained,
efficient GPU sharing to achieve cost-effectiveness for both
cloud users and providers, while meeting latency SLOs for
inference functions, i.e., being SLO-aware. For cloud users,
desired GPU functions should follow a pay-per-use billing
model without incurring high overhead to serve inference
requests and, if needed, resume from idling. This ensures
low-latency, SLO-aware inference, and allows users to easily
reap economic benefits under dynamic request patterns. For
cloud providers, GPUs are much more expensive than CPUs
and should be efficiently shared across functions to improve
resource efficiency and reduce overall inference cost.

In this paper, we propose to leverage model swapping to
enable fine-grained, request-level GPU sharing and efficient
model inference. Our key insight is to keep inference func-
tions alive in host, and only swap their models to GPUs when
they are activated to serve arriving requests; a GPU is shared
by multiple functions across requests. This incurs no GPU
memory footprint when functions are idle, which in turns
enables pay-per-use billing for GPUs (i.e., cost-effective for
users). As host memory is much larger than GPU memory, it
substantially increases the number of functions each GPU can
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accommodate, leading to efficient GPU sharing and improved
GPU utilization (i.e., cost-effective for providers). Swapping
models between host and GPU can be performed efficiently
through PCIe, and thus leads to much lower latency than func-
tion cold starts and can be easier to meet request-level latency
SLOs (i.e., SLO-aware). In addition, whenever desired, we
also swap models between GPUs via fast NVLink connec-
tions for lower latency and load balancing.

However, enabling model swapping in serverless platforms
poses both systematic and algorithmic challenges. First, a
serverless platform must efficiently perform model swapping
and make it transparent to users, who should not be required
to write “swapping logic” in their inference functions and
should be unaware of underlying swapping actions. Since
model swapping enables fine-grained GPU sharing, the plat-
form also needs to ensure proper isolation across multiple
functions. Second, model swapping can incur considerable
PCIe traffic and cause bandwidth contention during concur-
rent inference executions of multiple functions, which leads
to increased end-to-end latency. Hence, the platform must
design efficient request scheduling and model management
algorithms to exploit model swapping such as to meet latency
SLOs for all inference functions at low resource cost.

To address these challenges, we present FaaSwap, a GPU-
enabled serverless platform with efficient model swapping.
FaaSwap adopts an architecture of GPU pooling, where each
worker manages a pool of local GPUs and lets its functions
access this pool for inference execution (e.g., via CUDA API
redirection), such that model swapping can be easily per-
formed in a GPU pool and be transparent to users. Specifically,
to solve the aforementioned systematic challenges, FaaSwap
proposes three key designs that exploit the characteristics
of inference to deliver low-latency model swapping and ex-
ecution. First, it proposes asynchronous API redirection to
avoid frequent synchronizations between the functions and
the GPU pool, which effectively eliminates high communi-
cation overhead for model inference. Second, FaaSwap lever-
ages pipeline execution to overlap model swapping and infer-
ence execution, which hides the latency of model swapping
and results in reduced end-to-end latency. It also leverages
high-speed NVLink between GPUs for fast model swapping
whenever possible. Together with the low-latency API redi-
rection, FaaSwap can efficiently execute models on any idle
GPU. Third, FaaSwap designs an efficient GPU memory man-
agement system to facilitate model swapping and inference
execution. It automatically tracks the addresses of models
when they get swapped even across multiple GPUs, and eas-
ily adjusts each memory access of CUDA APIs accordingly
during inference execution. It also effectively organizes and
shares memory blocks to avoid high memory allocation over-
head, improving overall performance of model swapping. In
addition, FaaSwap ensures resource and fault isolation in its
GPU pool.

To further address the aforementioned algorithmic chal-
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Figure 1: A two-day request trace of a typical GPU inference
function in FC.

lenge to meet latency SLOs for all inference functions at low
GPU cost, we propose three policies: First, FaaSwap designs
a request scheduling algorithm to reduce model swapping
overhead, leading to low end-to-end inference latency. It di-
vides models into two categories, i.e., heavy or light, accord-
ing to whether they cause high overhead of swapping through
PCIe. In request scheduling, FaaSwap prioritizes NVLink over
PCIe to transmit heavy models across GPUs, and effectively
reduces interference caused by concurrent model swapping.
Second, FaaSwap also exploits model heaviness to guide the
eviction when GPU memory is insufficient. It tends to cache
heavy models in GPUs and evicts light ones; together with
request scheduling, it can substantially minimize swapping
overhead. Third, FaaSwap proposes a SLO-aware request
queueing policy, which prioritizes requests to functions that
have higher chance to meet SLOs and thus effectively im-
proves the total number of SLO-compliant functions.

We have implemented and evaluated FaaSwap atop Alibaba
Cloud Function Compute (FC) [1], one of the world’s largest
commercial serverless platforms. Evaluation results show that
FaaSwap achieves low-latency model inference and swapping
in its GPU pool, which leads to comparable performance with
native execution. FaaSwap can share a GPU across hundreds
of functions and load-balance GPUs with model swapping,
resulting in over 10× cost reduction compared with current
GPU offering in FC. With its efficient policies, FaaSwap can
enable serving 480 functions at a single 4-GPU worker while
achieving low tail latency and satisfying millisecond-scale
SLOs for all functions. Cluster experiments further show that
FaaSwap can effectively scale with function numbers at low
resource cost, which meets per-function latency SLOs for
thousands of functions using 6 GPU workers.

2 Background and Motivation

In this section, we motivate the need of having a GPU-enabled
serverless platform for high-performance inference and iden-
tify three key requirements in this regard. We also discuss the
inefficiency of existing solutions.

2.1 Serverless Inference and the Need of GPU
As a prominent serverless platform with a global presence,
FC has observed a growing adoption among enterprise cus-
tomers who choose to provision their inference services using
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serverless functions, known as “serverless inference.” In this
approach, users package models and inference code into con-
tainers and publish them as serverless functions, which can
be dynamically invoked to make predictions. With server-
less inference, users are relieved of the burden of server
management as it is automatically handled by FC, such as
provisioning, autoscaling, scheduling, and fault tolerance.
Serverless inference can also enable significant cost sav-
ings as users do not pay for idle resources under the pay-
per-use pricing model [12, 36, 39, 40]. In FC, a function’s
requests typically exhibit dynamic, bursty arrival patterns
as shown in Fig. 1, consistent with previous research find-
ings [17,18,22,23,28–30,32,42]. Leveraging the high elastic-
ity of serverless computing, inference functions can quickly
scale in response to the changing workload, while users are
billed based on the function runtime, with billing granularity
as fine as 1 ms [5, 7].

However, both FC and other leading serverless platforms
currently lack efficient support for GPUs, impeding their abil-
ity to achieve high-performance inference. In fact, numerous
FC users have expressed a compelling need to execute their
models on GPU-enabled functions, indicating the strong mar-
ket demand for GPU-accelerated inference in current FaaS
platforms.

2.2 Key Requirements
Based on our operational experiences and interactions with
FC customers, we have identified three key requirements for
building an efficient GPU-enabled serverless inference plat-
form.
Compliance to latency SLOs. Enterprise users often have
stringent latency requirements for online inference, which is
the key driver behind their demand for GPU support in FC.
Therefore, our platform should allow users to specify their
latency requirements as SLOs, such as ensuring that at least
99% of inference requests are served within 200 ms [40].
The platform should strive to meet the latency SLOs for all
functions, if possible.
Pay-per-GPU-use. Compared to the traditional “serverful”
approach, one of the key advantages of serverless computing
is its pay-per-use billing model. Users hence requires that
their inference functions are billed based on the actual GPU
usage, with charges incurred only when the functions are
invoked and running on GPUs (pay-per-GPU-use).1 This is
crucial for achieving substantial cost savings in the presence
of dynamic inference workloads (Fig. 1), considering the high
cost of GPUs.
GPU-efficient inference. For serverless providers like FC,
minimizing the resource provisioning cost is the key to main-

1Note that in our experience, enterprise customers are willing to pay a
nominal fee to retain idle functions in host memory for substantially improved
performance, similar to the current function keep-alive charge meant to avoid
cold-start overhead [3, 6, 25].

Table 1: Model execution time when the inference functions
are warm- and cold-started on V100 GPU, respectively.

Model Mem. footprint Warm-start Cold-start

ResNet-152 1.6 GB 24 ms 8 s
Bert-qa 2.4 GB 45 ms 11 s

1 r/h 1 r/m 1 r/s
Request rate (log-scale)

0

0.6

0.85
0.97

C
D
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Figure 2: CDF of function average request rate from one-week
production trace (left) and expected GPU load under various
per-function request rates when running multiple functions
on a V100 GPU to saturate its 32 GB memory (right).

taining market competitiveness. Given the significantly higher
cost of GPUs compared to other resources, the platform
should serve as many inference functions as possible using
a minimum number of GPUs, thereby attaining the highest
GPU utilization. This essentially requires fine-grained and
efficient GPU sharing.

2.3 Existing Solutions and Their Inefficiency

Inefficiency of existing solutions. Achieving the three re-
quirements presents non-trivial challenges. Compared to CPU
functions, running inference functions on GPUs incurs con-
siderable startup overhead. Table 1 provides a comparison
of model execution times when the inference functions are
warm- and cold-started on V100 GPUs in FC.2 Cold-start
results in a two orders of magnitude slowdown due to the
need for GPU container setup, ML framework startup (Py-
Torch in our case), GPU runtime creation, and model loading.
This leads to extremely long latency that far exceeds the SLO
requirement of model inference.

To avoid cold-start, a common approach is to maintain
provisioned functions that remain active on GPUs [4,6]. How-
ever, this approach deviates from the serverless paradigm
and is costly for both cloud users and providers. First, as
provisioned functions, even when idling, occupy GPUs for
extended duration, users are obligated to pay for the allocated
GPUs regardless of actual usage [3], leading to high expenses
that undermine the cost-saving benefits of serverless inference.
Second, it results in severe GPU underutilization, considering
that the majority of functions exhibit low to medium request
rates. Fig. 2 (left) depicts the distribution of the average re-

2For cold-start, we exclude the delay of fetching a remote container image
or model file, which can take extra seconds to minutes to complete [35].
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Table 2: A comparison of FaaSwap and existing solutions that
offer GPU support in serverless platforms.

Solution SLO-aware Pay-per-GPU-use GPU-efficient

FC [1] × × ×
Molecule [20] × − ×

DGSF [21] × − ×
INFless [36] ✓ − ×
FaaSwap ✓ ✓ ✓

quest rates of FC functions in a one-week trace, revealing
that 85% (97%) of functions were invoked only once per
minute(second) on average3. These findings align with obser-
vations from other production traces [7, 31].

Table 2 provides a comparison of existing solutions that
offer GPU support in serverless platforms and our system,
FaaSwap. Alibaba Cloud Function Compute (FC) [1], as a
prominent commercial serverless platform, fails to meet la-
tency SLOs and achieve resource efficiency for GPU func-
tions. Molecule [20] introduces a serverless platform that
supports GPUs and other hardware devices, while DGSF [21]
enables serverless functions to access GPUs in a remote clus-
ter. However, both works primarily target general-purpose
workloads and suffer from GPU inefficiency. INFless [36]
presents a serverless system specifically designed for model
inference with GPU function support. Although it aims to
minimize inference latency, it still results in GPU idling and
cost inefficiency.
Request-level GPU sharing and its limitations. To en-
hance resource efficiency, it is intuitive to implement finer-
grained GPU sharing, whereby multiple functions can be
consolidated onto a single GPU. Each function exclusively
utilizes the GPU when activated and relinquishes it upon com-
pletion, allowing other functions to execute requests. This
approach can potentially improve overall GPU utilization but
has two limitations.

First, it still requires to cache a large number of idle in-
ference functions, which ultimately saturates GPU memory
and compromises resource efficiency. Fig. 2 (right) illustrates
the expected GPU load, measured as the proportion of the
GPU busy period, under varying per-function request rates
when multiple functions are running on a single V100 GPU
that fully occupies its 32 GB memory capacity. A higher GPU
load signifies improved utilization. However, the GPU load
consistently remains low due to the limited GPU memory.
Even when the request rate per function exceeds 1 r/s (the
97th percentile in Fig 2 left), the GPU load still remains below
60%.

Second, packing multiple functions into a GPU can make
it overloaded for a short period due to the bursty request
patterns. In a multi-GPU machine, this can inevitably result in
hot spots and load imbalance across GPUs, which cannot meet

3For confidentiality reasons, we only depict the request rate of CPU
functions, which exhibits similar patterns as those running on GPUs (see
Fig. 1).

request-level latency SLOs nor achieve high GPU utilization.
The impact of load imbalance is demonstrated in Fig. 7, with
details given in §7.1.

3 Key Insight and FaaSwap Overview

We next discuss our solution to aforementioned limitations.
Key insight. As described in §2.3, existing solutions have
to keep inference function alive in expensive, limited GPU
memory, which leads to not only high function idling cost but
also GPU underutilization even under fine-grained resource
sharing. Therefore, to enable efficient request-level GPU shar-
ing, a serverless platform must support fast inference execu-
tion and low function keep-alive cost, without incurring GPU
memory footprint when idling.

We propose to leverage model swapping for low-latency,
resource-efficient serverless inference. We keep functions
alive by caching the models in host memory, and swap mod-
els into GPUs only when requested. Since host memory can
be cheaper with much larger amount than GPU memory (e.g.,
a few TB vs. tens of GB), our solution not only avoids charg-
ing users for GPU resources during function idling (i.e., pay-
per-GPU-use), but also significantly increases the number
of functions each GPU can serve, thereby improving over-
all resource efficiency. Moreover, model swapping can be
efficiently performed through PCIe and incurs much less over-
head than function cold starts, which can sustain low inference
latency and be easier to satisfy request-level millisecond-scale
SLOs. We also swap models between GPUs via high-speed
NVLinks, which further improve swapping performance and
effectively mitigates load imbalance across GPUs.
Challenges and overview. Following this insight, we
present FaaSwap, a serverless platform to enable model swap-
ping for low-latency inference and GPU resource efficiency.
Achieving so in FaaSwap can pose both systematic and algo-
rithmic challenges.

First, it is non-trivial to enable efficient model swapping
and ensure isolation in serverless platforms. In serverless
paradigm, users only deliver their inference functions, while
the platform holds no knowledge of their models, e.g., model
structure and parameters. This requires the platform to auto-
matically track memory footprint of each function, efficiently
transmit models, and make it transparent to users. That is,
users are not required to write “swapping logic” in their infer-
ence code and should be unaware of swapping actions taken
by the platform. Since model swapping enables fine-grained
GPU sharing across a large number of functions, the plat-
form should also carefully protect in-memory models across
various functions and ensure the isolation.

Second, it remains challenges to efficiently perform request
scheduling such as to exploit model swapping to satisfy la-
tency SLOs for all functions while achieving high resource
utilization. Unlike existing serverless platforms [34,36, 38],
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model swapping allows a function instance to run on various
GPUs across requests, requiring the platform to carefully de-
sign scheduling and memory management policies around
GPUs. In addition, model swapping can incur bandwidth con-
tention across functions during concurrent model swapping
through PCIe, which impacts end-to-end latency and request-
level SLOs. Therefore, the platform needs to judiciously de-
sign request scheduling, model swapping, and GPU memory
management policies to meet the properties in Table 2.

Therefore, FaaSwap should first enable efficient model
swapping in serverless platforms, and then design effective
algorithms to exploit it for SLO-aware inference and resource
efficiency. We will next discuss how FaaSwap addresses sys-
tematic challenges in §4, and defer its algorithm design to
§5.

4 FaaSwap System Design

In this section, we present the system design of FaaSwap.

4.1 Architecture overview
FaaSwap adopts an architecture of GPU pooling to enable
efficient GPU sharing and effectively make model swapping
transparent to users. FaaSwap runs a GPU server at each
worker node to manage all its local GPUs as a pool, such
that functions can directly interact with the GPU server to
access any GPU to facilitate resource sharing. In addition,
the GPU server holds models of all local inference functions
and can easily perform model swapping, without needing
functions to realize.

Fig. 3 shows the architecture overview of FaaSwap.
FaaSwap has two components, cluster manager and worker
nodes. The cluster manager takes charge of cluster-level tasks,
including request routing, node allocation, and resource scal-
ing. Each worker node hosts a number of functions, runs a
GPU server, and uses an intra-node router to control requests
to local function instances. The GPU server uses its model
repo to manage models in host memory, and runs an executor
for each GPU in the pool, which handles CUDA calls, swaps
required models, and manages memory accordingly . The
server also has a controller that holds a global view of GPU
memory and executor status and can determine how to sched-
ule requests to GPUs (executors). Once a request arrives at the
target function, it interacts with the scheduled executor using
a GPU client and remotes CUDA API calls during inference
execution. GPU server, router, and functions in the worker
node run as containers.

Key to FaaSwap is to design and build an efficient GPU
server that enables fast, resource-efficient inference and model
swapping. This poses four challenges: (1) how FaaSwap en-
ables efficient GPU remoting (§4.2); (2) how FaaSwap ob-
tains the knowledge of model and achieves low-latency model
swapping (§4.3); (3) how FaaSwap efficiently manages GPU

Worker nodes

Cluster manager

Request router Node manager

Intra-node 
router

GPU server

Functions

GPU pool

Controller

Model repo

GPU executors

…

…

1

2

3

4

GPU client

ML framework

GPU client

ML framework

G0 G1 G2 G3

E0 E1 E2 E3

Figure 3: Architecture overview of FaaSwap. A request ar-
riving in FaaSwap cluster is first routed to the worker node
hosting its target function 1⃝. The router in the node syn-
chronizes with the GPU server to query the executor for this
request 2⃝, and then routes it to the function instance with
target executor ID 3⃝. The function instance next processes
the request and uses a GPU client to automatically redirect
CUDA API calls to this executor 4⃝, and finally returns a
result to the user after request completion.

memory (§4.4); and (4) how FaaSwap ensures the isolation
and handles failures (§4.5). We next elaborate the designs of
FaaSwap to address these challenges.

4.2 GPU Remoting

GPU remoting is fundamental to pooling, and we describe
how FaaSwap enables GPU remoting and addresses the chal-
lenges therein.
CUDA API redirection. FaaSwap enables GPU remoting by
redirecting CUDA API calls from function instances to GPU
executors. Each function instance runs a GPU client that can
intercept CUDA APIs from ML frameworks, e.g., PyTorch
inference programs, and remotes them to GPU executors for
CUDA execution. This allows a function instance to access
various GPUs at a request granularity: after scheduling a re-
quest ( 2⃝ in Fig. 3), the GPU client can redirect all its CUDA
calls to the target executor ( 4⃝); following requests to this
function can be scheduled to other executors, and the client
varies the target accordingly. Hence we can effectively mi-
grate load between GPUs with the support of model swapping
(§4.3).

However, CUDA API redirection can incur significant
synchronization overhead compared with native execution,
which dramatically slows down model inference. According
to our measurement, it can need thousands of CUDA API
calls in an inference execution, e.g., over 4k calls for ResNet-
152, and thus a large number of synchronizations between a
function and a GPU executor cause a substantial delay, e.g.,
hundreds of milliseconds (Table 4), violating request-level
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SLOs. FaaSwap avoids such synchronization overhead via
asynchronous API redirection.
Asynchronous redirection. We observe that intermediate
steps in an inference execution are typically performed asyn-
chronously in GPU — the intermediate data get generated and
consumed on GPU memory without requiring any data trans-
fer to the host, until the execution is completed and the host
receives an output result. Therefore, a function can redirect in-
termediate CUDA calls to the GPU executor asynchronously
without waiting for their results, and perform synchroniza-
tions only for the final output. This approach does not affect
the execution order and thus can ensure the correctness of
model inference.

Following this insight, we perform asynchronous redirec-
tion for CUDA APIs that can be executed asynchronously.
In particular, we divide the set of CUDA APIs into two cate-
gories based on their semantics: synchronous, blocking APIs
and asynchronous, non-blocking APIs. The former needs the
host to wait for their completion and use the outputs in follow-
ing steps, e.g., cudaMalloc, and thus we by default perform
synchronizations. The latter do not change the runtime state
in the host, e.g., cudaLaunchKernel, allowing asynchronous
API redirection without blocking. FaaSwap supports common
CUDA runtime APIs and CUDA libraries, e.g., cuDNN, and
we show the category of each API in Appendix A.1.

With asynchronous API redirection, we can fuse multiple
consecutive API calls into a single group and send them to-
gether. Such group-level API redirection can further reduce
communications, but it requires an effective grouping strategy.
Fusing too many calls into one group, e.g., all intermediate
API calls, can greatly eliminate communications between the
function and executor, which however needs functions to wait
until all calls are issued. On the other hand, having too few
calls in each group, e.g., one call per group, incurs no extra
delay but can need a large number of communications, i.e.,
frequent API redirections. Therefore, we conduct extensive
profiling and choose a “good” group size, which can balance
the two factors for overall high redirection performance.

We show the performance advantages of asynchronous,
group-level API redirection in Table 4 (§7). Compared with
synchronous API redirection, FaaSwap can cut the inference
latency of popular models by up to an order of magnitude
due to significantly reduced communications. Surprisingly,
FaaSwap can even outperform the native execution, i.e., using
local GPU without GPU remoting, for evaluated CNN mod-
els. The performance gain is owed to parallel execution, as
many asynchronous CUDA APIs in these models require only
CPU, such that API redirection in fact distributes CPU-side
workloads across both functions and executors. For Bert-qa
that requires no CPU-side CUDA APIs, FaaSwap still leads
to comparable performance with native execution, indicating
a negligible overhead of asynchronous API redirection.
GPU runtime sharing. GPU programs need GPU runtime
to manage GPU-side states, which can account for a consider-

Pinned memory pool

Pageable memory

…

…

Host

GPU

Models:

GPU 0 GPU 1

Figure 4: An example of model swapping. Models can be
swapped from host to GPU through PCIe (green arrows), and
across GPUs through NVLink (red arrow).

able portion of memory footprint, e.g., about 1 GB for models
in Table 1. To improve memory efficiency, in FaaSwap each
GPU executor shares a single GPU runtime across functions it
hosts. This dramatically reduces GPU memory footprint and
alleviates the need of creating a new runtime after model swap-
ping, which can take a few second. FaaSwap also preloads all
CUDA kernels on each GPU to avoid loading overhead. We
will discuss isolation of FaaSwap in §4.5.

4.3 Model Swapping

We next describe how FaaSwap manages and efficiently swaps
models in its GPU server.
Model management. FaaSwap can automatically track
model knowledge during function cold starts. We note that
the model access pattern typically remains the same across
requests, e.g., access order of parameters, and thus can be eas-
ily obtained without needing user input. In particular, when a
function instance starts loading the model, a GPU executor
receives relevant CUDA API calls that contain its parame-
ters, and tracks every GPU memory access for its first run.
FaaSwap leverages access order of parameters to guide future
model swapping, and also keeps a model copy in host mem-
ory. Both model copies and access patterns are maintained in
the model repo (Fig. 3) until associated function instances are
terminated.
Model swapping. With model knowledge, FaaSwap can per-
form model swapping at request level. The GPU server sched-
ules a request to an executor ( 2⃝ in Fig. 3), which can trigger
model swapping if the requested model is not loaded on the
target GPU. Together with CUDA API redirection (§4.2),
FaaSwap can easily execute a model on various GPUs across
requests. Fig. 4 gives an example of FaaSwap’s model swap-
ping. Host-to-GPU model swapping is performed through
PCIe, and requires a model to be pinned at first to enable DMA
transfers, which triggers additional memory copy. FaaSwap
therefore shares a pinned memory pool across models to re-
duce memory copy with only small pinned memory footprint.
FaaSwap also supports GPU-to-GPU model swapping when
a GPU is too busy to serve its models. It can swap a model to
other idle GPUs via fast NVLinks, and schedule its requests
to corresponding GPU executors, which ensures fast function
switching across GPUs for load balancing, and achieves low
request latency. FaaSwap performs model swapping when
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GPU memory is insufficient. Like cache eviction, we simply
invalidate GPU memory region of a model without needing
to swap it back to host, which holds a copy for each model.
This avoids the swapping overhead with only an insignificant
cost. We defer detailed model swapping and eviction policies,
e.g., when and where to swap models, to §5.

However, model swapping can pose two challenges. First,
it requires FaaSwap to carefully manage and translate GPU
memory addresses. As functions are agnostic to the underly-
ing model swapping, model addresses of their CUDA calls
remain the same across various requests, even when they run
on different GPUs. Therefore, FaaSwap automatically tracks
memory addresses for model swapping and updates relevant
memory access in each CUDA API call accordingly, which is
made transparent to functions. We defer the details of mem-
ory management to §4.4. Second, model swapping can incur
extra delay to end-to-end inference latency. To improve over-
all performance, FaaSwap exploits model pipeline to hide the
overhead of model swapping, which we describe below.
Optimize model swapping via pipeline. Note that model
inference executes only a forward pass and is generally per-
formed layer by layer. This allows us to overlap the transmis-
sion of next layers and the computation of previous layers
in GPUs, thus enabling pipeline execution [14, 33]. We ex-
ploit two characteristics of FaaSwap to design its pipeline
execution.

First, FaaSwap’s GPU server executes a model and keeps
track of its parameters at CUDA API level (§4.2), by which we
perform CUDA-level model pipeline. In particular, it loads
parameters of the requested model following their access
order obtained at the first run; during inference execution, it
checks if model parameters required by each CUDA API are
loaded in GPU; otherwise it waits until they become ready. In
this way, the executor concurrently swaps model parameters
and executes CUDA APIs on those loaded to reduce overall
latency. Such pipeline execution can apply to both host-to-
GPU and GPU-to-GPU model swapping.

Second, CUDA-level model pipeline can require frequent
synchronizations between host and GPUs to ensure each
CUDA API call get issued only when its data are loaded.
FaaSwap reduces such synchronization overhead by group-
level model pipeline. It swaps multiple consecutive parame-
ters as a group, and performs synchronization once an entire
group is loaded into a GPU. Determining how parameters are
grouped poses a tradeoff between the swapping performance
and pipeline efficiency: grouping more parameters incurs less
synchronizations with reduced swapping overhead, but leads
to less overlap between model transmission and computation.
FaaSwap’s model pipeline needs a “good” group size that can
balance the tradeoff and be generally applied to various mod-
els. We notice that grouping too many parameters can have
little improvement on swapping performance, as synchroniza-
tions therein cause only negligible overhead. Therefore, we
profile the performance of transmitting various-size data, and

choose a knee point as a desired group size, which can achieve
good swapping performance without impacting pipeline effi-
ciency too much. Such group size can be directly applied to
different models, and only depends on hardware configura-
tions, e.g., PCIe bandwidth.

We show the performance gain of FaaSwap’s pipeline exe-
cution in Table 4 (§7). Compared with separate model swap-
ping and inference execution, i.e., non-pipeline, FaaSwap’s
pipeline execution achieves better end-to-end performance,
reducing the latency by about 50%. Model pipeline through
high-speed NVLink further improves the performance due
to reduced swapping overhead, which can be comparable to
inference execution only (“Remote Async.”).

4.4 Memory Management
GPUs have a memory management system that provides sim-
ilar functionalities with CPUs, e.g., memory allocation, and
also supports unified memory to transparently handle data
movement between host and GPU memory. However, native
GPU memory management is designed for general-purpose
workloads and cannot be directly applied to FaaSwap’s model
swapping. There are mainly two challenges. First, in FaaSwap
model swapping not only requires data transmission, but also
involves CUDA-level pipeline executions that can run on
multiple GPUs across requests (§4.3). This requires FaaSwap
to hide the memory details across various GPUs and per-
forms fine-grained synchronizations, which is not natively
supported by GPUs. Second, native memory allocation (e.g.,
cudaMalloc) incurs considerable overhead, while FaaSwap
can need frequently model loading and eviction, significantly
degrading overall swapping and inference performance. To
address the above challenges, we design a GPU memory man-
agement system for FaaSwap’s model swapping.
Memory address management. When model swapping
occurs, either host-to-GPU or GPU-to-GPU, actual memory
addresses of model parameters can differ from original ones,
which requires FaaSwap to carefully manage memory layout
and automatically translate each memory access in CUDA
execution. FaaSwap exploits the memory layout of ML frame-
works to facilitate address management. ML frameworks,
such as PyTorch and TensorFlow, typically organize data into
blocks for ease-of-management, where each GPU memory
block can contain a number of parameters. This hence allows
FaaSwap to perform memory mapping at block level. In par-
ticular, FaaSwap tracks memory blocks for each function and
maintains a mapping to their actual physical addresses after
model swapping. Internel data layout in each block, e.g., the
offsets of its parameters, remains the same, such that FaaSwap
can easily obtain the physical address of a particular parame-
ter using its belonging block address and corresponding offset.
Therefore, FaaSwap needs not to maintain much metadata for
individual data pointers, effectively handling address transla-
tion without high management overhead.
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Memory allocation and block management. FaaSwap
needs to allocate and free memory blocks during model swap-
ping and evictions. Using native GPU memory management
for block allocation can cause high overhead, e.g., tens to
hundreds of milliseconds for a single model (Fig. 9), which
impairs overall swapping performance. FaaSwap hence pre-
allocates all GPU memory and internally manage all blocks
to avoid using native APIs in block allocation. However,
this poses a challenge for block management: the size of
blocks and their popularity can vary across models, requir-
ing FaaSwap to efficiently manage blocks and avoid many
memory fragments; otherwise it needs to frequently release
existing blocks for reallocation and lead to high overhead.
Buddy memory allocation [27] is a classic approach to reduce
memory fragments, which divides and merges idle blocks
based on power-of-two multiples. We revise this approach by
exploiting two characteristics of FaaSwap.

First, we leverage block usage patterns of ML frameworks
for reduced memory fragments. For example, PyTorch by
default uses fixed-size blocks to host small- and moderate-
size data, and thus these block sizes have high popularity
across various models, e.g., 20 MB. FaaSwap therefore di-
vides blocks into two categories based on their sizes, i.e., reg-
ular fixed-size blocks and others irregular, and manages them
separately. In particular, FaaSwap divides all GPU memory
into a number of memory partitions at bootstrap. Memory par-
titions are created via native CUDA allocation API and have
the same size, each hosting either category of blocks. FaaSwap
can perform Buddy-based management in each memory par-
tition to allocate and reclaim blocks. For partitions hosting
regular blocks, FaaSwap adopts a revised policy, e.g., directly
dividing memory into fixed-size blocks rather than native
Buddy allocation, which can further reduce fragments. Once
all blocks of a partition are reclaimed, it becomes idle and can
be later used by any block category. Second, in FaaSwap all
blocks of a model are expected to be accessed entirely during
model swapping and execution, and also reclaimed together
after model eviction. Motivated by this observation, we can
package blocks from the same model as tight as possible,
e.g., collocating them on a single memory partition, such that
model eviction can easily free entire memory partitions and
make them available for future block allocation. FaaSwap can
also periodically consolidates blocks to reduce fragments.

4.5 Isolation and Fault Handling
We next discuss how FaaSwap handles resource and fault
isolation across function instances.
Resource isolation FaaSwap provides container-level iso-
lation for CPU and memory resources 4, similar to existing
serverless platforms. For GPUs, FaaSwap performs software-
based isolation at its GPU server, which ensures GPU com-

4FaaSwap makes no assumption on sandboxes and can also support mi-
croVMs [11].

Table 3: Latency (ms) of model pipeline execution with in-
creasing ratio when concurrently swapping other models
through PCIe. The diagonal numbers indicate the latencies
without concurrent models.

Model DenseNet-169 ResNet-152 Bert-qa

DenseNet-169 27 27 (+0%) 27 (+0%)
ResNet-152 31 (+7%) 29 43 (+48%)

Bert-qa 166 (+11%) 240 (+61%) 149

pute resources, e.g., SM, are exclusively allocated to function
instances at a request granularity. It also isolates GPU mem-
ory by prohibiting functions from accessing memory regions
of others, which can be easily achieved by GPU memory
virtualization (§4.4).
Fault handling and isolation FaaSwap sustains various
component failures. In case that function instances fail,
FaaSwap simply restarts them to resume the execution, which
has no side effect due to the stateless nature of model infer-
ence. For executor failures at GPU server, FaaSwap migrates
affected models to other active executors via swapping, and
restarts failed ones. The GPU server can also persist runtime
states in local storage, e.g., models and metadata, such as
to allow fast recovery from the failure of an entire server.
Therefore, FaaSwap can effectively handle faults occurring in
function execution, and isolate them across various functions.

At cluster level, FaaSwap persists metadata of individual
nodes in a database, and thus the cluster manager can easily
retain these states and recover from failures. It also keeps pe-
riodic health checks with the router of each worker node, and
handles node failures by launching a new node and migrating
all relevant functions.

5 FaaSwap Policy Design

In this section, we present how FaaSwap achieves desired
properties, i.e., SLO-aware and resource-efficient (Table 2),
with its policy designs. We start with the design overview,
followed by individual policies.

5.1 Design Overview

Objectives. The overall objective of FaaSwap is to meet
latency SLOs for all inference functions while minimizing
resource cost. We define a function to comply with SLOs if
its tail request latency is less than a user-specified deadline,
and meter resource cost by the number of worker nodes. Key
to achieving this goal is to maximize the number of SLO-
compliance functions at each worker, such that FaaSwap can
efficiently exploit per-worker GPU resources to host as many
functions as possible, which in turn reduces the total number
of workers required.
Challenges. Maximizing the number of SLO-compliance
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functions at nodes can pose three challenges. First, model
swapping allows FaaSwap to host much more functions on
a worker node, the dynamic request patterns of which can
cause short load burst, overload its GPUs, and result in re-
quest queueing. This requires FaaSwap to carefully determine
how requests should be prioritized in the queue such as to
meet latency SLOs for as many functions as possible. Sec-
ond, FaaSwap schedules requests to GPUs when they arrive
at GPU server ( 2⃝ in Figure 3), which accordingly determines
where to swap target models. However, the performance of
model swapping can be impaired and hard to predict due
to bandwidth contention, which makes it challenging for re-
quest scheduling to ensure low-latency inference. For ex-
ample, Table 3 shows the latency of model pipeline when
concurrently swapping other models through PCIe, which
leads to diminished performance especially for large mod-
els. Third, FaaSwap needs to determine how to evict models
and which models should be kept in GPUs such as to reduce
model swapping and improve overall inference performance.
Achieving so in model eviction is non-trivial due to dynamic,
hard-to-predict request arrival patterns.

We note that it is fundamentally unable to jointly find the
optimal solutions to these challenges, as both future request
arrival patterns and swapping performance are unpredictable
in our settings. Even with perfect future knowledge and pre-
dictable performance, the problem is still NP-hard and do not
apply to online inference [42]. We therefore address the chal-
lenges separately with heuristic solutions, which we describe
below. We summarize how FaaSwap leverages these policies
to achieve overall objective in §5.5.

5.2 Request Queueing
At each worker, intra-node router queues and dispatches re-
quests (Figure 3), which aims to satisfy latency SLOs for as
many functions as possible. Intuitively, FaaSwap can prior-
itize functions according to the possiblity to comply with
SLOs, such that requests to functions with higher possibil-
ities should get executed first for reduced queueing delay.
Following this insight, we can divide all functions at a node
into two sets based on whether they can potentially satisfy
SLOs, and respectively maintains two queues for their re-
quests, i.e., high- and low-priority. When there are available
GPUs, FaaSwap first executes requests from the high-priority
queue, and only dispatches low-priority requests if the former
is empty. Functions can be moved between the two sets at
runtime according to their possibilities to comply with SLOs.
However, enabling this needs to address two key challenges:
(1) how can we quantify the SLO-compliance possibility for a
function, and (2) how shoud we partition functions into high-
and low-priority sets.
Metric for function prioritization. A desired metric should
capture “how much effort” required to satisfy SLOs, and thus
functions with less effort can be easier and have more chance

GPU 0 GPU 1

GPU 2 GPU 3

NVLink 1x

NVLink 2x
Host

PCIe

Figure 5: Topology of 4-GPU worker node in FC.

to achieve so. We therefore propose as the metric required
request count (RRC), which measures the expected number
of future requests served within deadlines in order to meet
SLOs. Let n be the current number of requests for a function,
and m be the number of requests served within deadlines out
of total n requests. The RRC of the function can be defined
as pn−m

1−p , where p is the tail percentile specified in SLOs, e.g.,
98%. This is simply derived from the equation: m+RRC

n+RRC = p.
RRCs of various functions can be normalized by average
request latency. Functions with negative RRCs have already
satisfied SLOs until now, while the larger a function’s RRC
is, the lower it has a possibility to make it. This allows us to
prioritize requests to functions with smaller RRCs.

Divide functions into two priority sets. With RRCs, we can
divide functions into high- and low-priority sets and determine
request execution order in each function set. Intuitively, we
can put functions with small RRCs (i.e., both small positive
and negative) in the high-priority set, and the rest in the low-
priority set, which can sustain existing SLO-compliance func-
tions and increase the number whenever possible. Determin-
ing the RRC boundary between the two sets can be challeng-
ing — having too many (few) high-priority functions can be
too aggressive (conservative) to enable more SLO-compliance
functions. In FaaSwap we use a threshold α∈ [0,1] to indicate
the boundary and determine how many functions should be
prioritized: we can prioritize more functions by increasing
α, and aggressively put all functions in the high-priority set
when α is 1. Consider a node with N functions sorted by
RRCs, and let RRCi be the RRC of function i. We put the first
k functions in the high-priority set, where k is the largest in-
teger such that ∑

k
j=1 max(RRC j,0) ≤ α ·∑N

i=1 max(RRCi,0).
FaaSwap can automatically configure α at runtime based on
overall load and function SLOs. When there is a short load
surge and the number of SLO-compliance functions decreases,
FaaSwap turns to be conservative with a small α; otherwise
α can increase to prioritize more functions. We defer the de-
tailed algorithm of α auto-configuration to the Appendix A.2.
FaaSwap also periodically adjusts the two set of functions
according to their up-to-date RRCs and α.

The request execution order in each priority queue can also
be determined with function RRCs. In high-priority queue,
requests are prioritized in a reverse order of RRCs, such that
functions with small positive RRCs can be favored and easily
made SLO-compliance. In contrast, requests in low-priority
queue should follow the order of RRCs, as the smaller a low-
priority function’s RRC is, the more chance it can have to be
prioritized and satisfy SLOs.
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5.3 Scheduling and Model Swapping

We next describe how FaaSwap schedules requests to GPUs
and swaps models at request execution. Once FaaSwap’s GPU
server receives a request ( 2⃝ in Figure 3), its controller de-
termines which GPU (executor) should load the target model
and process this request. Each GPU executes a request at one
time to ensure the resource isolation (§4.5). The objective
of request scheduling is to minimize per-request inference
latency, which however can be challenging due to accompa-
nying model swapping.

Bandwidth contention in model swapping. While the la-
tency of model execution is often stable [22], FaaSwap’s
model swapping can incur unpredictable overhead due to
PCIe bandwidth contention across GPUs [13, 26]. Fig. 5
shows topology of a worker node in FC, where each pair of
GPUs shares a PCIe switch and GPUs are inter-connected via
NVLinks with various bandwidths, e.g., faster NVLinks deliv-
ering 2× higher throughput than slower ones. We measure the
performance of concurrent model pipeline execution on a pair
of GPUs, as shown in Table 3. The performance slowdown
caused by bandwidth contention can vary in models, and is
generally more significant for large models that require more
data transmission, e.g., Bert-qa. Having said that, we observe
that swapping with light models can lead to reduced con-
tention and lower latency compared with bandwidth-intensive
models, e.g., ResNet-152 with DenseNet-169/Bert-qa. There-
fore, we propose to leverage this characteristic to reduce inter-
ference in model swapping for improved overall performance.

Interference-aware scheduling. For each request, FaaSwap
aims to minimize its interference with concurrent workloads,
which in turn reduces inference latency. We propose two
designs to achieve this. First, FaaSwap avoids concurrent
swapping for bandwidth-intensive models whenever possible.
It divides models into two categories based on their band-
width intensiveness in swapping, i.e., heavy and light models,
which can be easily done via simple model profiling: if model
pipeline significantly slows down inference execution, data
transmission can be bottleneck and thus the model is heavy
(see Table 4). We do not need accurate swapping performance
under concurrency, which in fact is hard to obtain. Second,
FaaSwap exploits direct NVLink connections between GPUs
to reduce PCIe contention. FaaSwap prioritizes GPU-to-GPU
over host-to-GPU model swapping such as to enable faster
model transmission and avoid interference with concurrent
PCIe traffic.

Algorithm 1 shows FaaSwap’s scheduling and swapping
policy. For a request, FaaSwap first checks whether the tar-
get model is loaded on an available GPU, and if so, directly
executes it without swapping overhead (line 8). If the model
hosted by busy GPUs, FaaSwap then schedules the request
to perform GPU-to-GPU swapping, in that the source and
target GPUs should have fastest NVLink connection (line 11).
Otherwise, FaaSwap resorts to host-to-GPU swapping and

Algorithm 1 Interference-Aware Request Scheduling
1: function SCHEDULE(req)
2: A← set of available GPUs ▷ A ̸=∅, otherwise queueing req
3: M← set of GPUs hosting the target model
4: if M ̸=∅ then
5: G←M∩A
6: if G ̸=∅ then
7: g← any GPU in G
8: Execute req on g ▷ Without swapping
9: else

10: (g,m)← GPU pair with fastest NVLink, g ∈ A,m ∈M
11: Execute req on g; Swap model from m ▷ GPU-to-GPU

swapping
12: else
13: g← a GPU whose neighbor is not loading models, g ∈ A
14: if g not found then
15: g← a GPU whose neighbor is loading a light model, g ∈ A
16: if g not found then
17: g← any GPU in A
18: Execute req on g; Swap model from host ▷ Host-to-GPU

swapping

prioritizes target GPUs whose neighbors are idle or running
light models to reduce PCIe contention (line 18). In a nutshell,
FaaSwap can minimize interference and overhead of model
swapping for each request, and thus provides low inference
latency.

5.4 Model Eviction

We next describe FaaSwap’s model eviction policy. FaaSwap
can cache models in GPUs for future requests, and determine
how to evict inactivated models from a GPU when its mem-
ory is fully occupied and cannot load others activated. Unlike
traditional cache eviction, model eviction in FaaSwap aims
to improve overall inference performance by reducing swap-
ping overhead. Swapping performance can directly impact
end-to-end latency compared with cache hit rate, and thus
model eviction should be made aware of swapping overhead
of various models, i.e., heavy or light.

Similar to interference-aware scheduling (§5.3), we per-
form model eviction to minimize swapping overhead for fu-
ture requests. We notice that swapping light models lead to
negligible overhead for end-to-end performance, while heavy
models can causes considerably long latency under pipeline
execution due to model transmission and accompanying band-
width contention (Table 3 and 4). Therefore, we tend to evict
models that have almost no impact on performance when
swapping, such as to cache more heavy models in GPUs
for reduced host-to-GPU data transmission and interference.
Following this insight, we divide models into two priority
sets: heavy models hosted by only a single GPU should be
prioritized, and the rest are low-priority and can be evicted
earlier, including light models and heavy ones with multiple
copies in various GPUs. As a result, FaaSwap only needs to
frequently perform host-to-GPU and cross-GPU swapping for
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light and heavy models respectively, both of which lead to no
PCIe bandwidth contention and thus achieve low swapping
overhead. In each priority set, we adopt a common Least-
Recently-Used (LRU) policy to determine the eviction order
for its models.

5.5 Put All Together
Finally, we describe how FaaSwap achieves desired properties
at cluster, i.e, SLO-aware and resource-efficient, with above
policies. FaaSwap’s cluster manager monitors node-level re-
quest load and function SLOs, and can eliminate potential
SLO violations by load migration and node scaling. Since
FaaSwap aims to maximize the number of SLO-compliance
functions at node (§5.2), it can by design discard popular func-
tions (i.e., with high request load) when a node is overloaded.
Therefore, FaaSwap can migrate these functions onto other
nodes with available resources and provision new nodes when
needed, which effectively meets SLOs for all functions at low
resource cost.

6 Implementation

We have implemented FaaSwap atop FC. FaaSwap’s GPU
server and GPU client are implemented in 4k and 1.5k lines
of C++ code, respectively. Intra-node router and cluster man-
ager are directly implemented atop relevant components in
FC. We also implement a demo router in 530 lines of Python
code to provide basic functionalities for single-node tests.
FaaSwap’s cluster manager can maintain and track a resource
pool of GPU nodes to ensure fast node allocation and scaling,
which is a common practice in FC. We provide a container im-
age as a function template based on PyTorch, where original
CUDA libraries are replaced by GPU clients to enable GPU
remoting, e.g., libcudart.so. This requires no modification
to the PyTorch framework.

7 Evaluation

In this section, we evaluate FaaSwap using production traces
from FC. Our evaluation ansewrs the following questions:

• Can FaaSwap enable efficient GPU remoting and model
swapping (Table 4)?

• How much benefit FaaSwap’s model swapping can bring
in terms of overall performance (§7.1)?

• Can FaaSwap maximize the number of SLO-compliance
functions at node and how does its individual design
policies contribute to overall performance gain (§7.2)?

• Can FaaSwap satisfy per-function latency SLOs and im-
prove resource utilization at cluster (§7.3)?

Settings. We deploy FaaSwap in a FC cluster following
production environments. FaaSwap runs on a cluster with up
to 6 workers. Each worker node has 48 vCPU cores, 384
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Figure 6: Performance of executing multiple ResNet-152
functions on a single GPU under FaaSwap’s model swapping
(Swap) and native execution (Native), which packs as many
as possible functions on the GPU to saturate its memory. We
show the median and 98th tail latencies under various per-
function request rate (left), and the aggregate throughput and
the function count in Swap normalized to Native (right).

GB memory, and 4 NVIDIA V100 GPUs, each with 32 GB
memory. We use 8 popular ML models in evaluation, as shown
in Table 4, and distribute them across inference functions in
a round-robin manner. Table 4 also shows the performance
of GPU remoting and model pipeline, which we discuss in
§4.2 and §4.3, respectively. We warm up all functions before
running test workloads to exclude cold starts.
Metrics We focus on the ratio of functions meeting SLOs
and GPU load in evaluation. For a function, it complies with
SLOs only when its tail request latency is less than a deadline.
By default, we use 98th tail latency, and set the deadlines for
CV models and Bert-qa to 80 ms and 200 ms, respectively.
The load is measured by the proportion of duration when the
GPU processes inference requests.

7.1 FaaSwap’s Model Swapping

We first discuss the benefits of FaaSwap’s model swapping.
Host-to-GPU model swapping. FaaSwap performs host-to-
GPU model swapping to reduce GPU memory footprint for
high resource efficiency. Fig. 6 compares FaaSwap with native
execution (Native), which simply keeps functions in GPUs
without swapping and shares a GPU across requests. Native
can only host a small number of functions due to limited GPU
memory, and thus leads to poor aggregate throughput under
low or median request rates. In contrast, FaaSwap can enable
much more functions with sufficient host memory, e.g., over
10× under 10 r/m, which significantly improves throughput
and leads to high GPU utilization. Only with a high request
rate, e.g., 120 r/m per function, FaaSwap and Native have
similar throughput. Note that 97% functions are requested
less than once per second in FC production cluster (Fig. 2 left).
Hence keeping models in host can dramatically improve GPU
memory efficiency and effectively support more functions per
GPU. In addition, FaaSwap achieves comparable performance
with Native due to efficient model swapping. For example,
the tail latency under 10 r/m only increases to about 50 ms

11



Table 4: ML models and the latency (ms) of GPU remoting and model swapping. Bert-qa [19] is a popular transformer-based
NLP model and others are popular CV models. Models are marked heavy if the swapping (Pipeline PCIe) significantly slows
down the inference (Remote Async.).

Model GPU Remoting Model Swapping in Execution Heavy?
Native Remote Sync. Remote Async. Non-pipeline Pipeline PCIe Pipeline NVLink

ResNet-50 11 82 9 23 13 11 Yes
ResNet-101 20 157 14 35 22 16 Yes
ResNet-152 27 236 19 45 29 21 Yes

DenseNet-169 30 262 25 34 27 26 No
DenseNet-201 36 331 28 39 30 30 No
Inception-v3 19 151 14 27 17 16 No
EfficientNet 17 101 12 17 13 13 No

Bert-qa 45 92 45 190 149 48 Yes
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Figure 7: Per-GPU load normalized to the maximum (left)
and 98th tail latency of requests on each GPU (right) under
FaaSwap’s model swapping (Swap) and Native.

with FaaSwap’s model swapping, which can effectively meet
latency SLOs. In FaaSwap, increasing the request rate can
reduce model swapping with fewer models and thus lead to
lower latency.
GPU-to-GPU model swapping. Fig. 7 compares FaaSwap
with Native on a 4-GPU worker. In Native functions are bound
to specific GPUs, which can easily cause GPU hot spots. In
contrast, FaaSwap enables GPU-to-GPU swapping and can
effectively migrate models for load balancing. Fig. 7 (left)
shows per-GPU load normalized to the maximum, where
FaaSwap can lead to less variance across 4 GPUs compared
with Native. Moreover, load imbalance in Native can greatly
impair the performance of model inference due to severe
request queueing. Fig. 7 (right) shows the 98th tail latency
of requests executed on each GPU, where Native leads to
extremely long tail latency, e.g., over seconds. Unlike Native,
FaaSwap can distribute load across GPUs via efficient GPU-
to-GPU model swapping, which consistently achieves fast
model inference and cuts the tail latency to around 35 ms for
all GPUs.

7.2 FaaSwap at Node
We next evaluate the performance of FaaSwap at node. We
evaluate FaaSwap using real-world workloads sampled from
production traces (Fig. 2 left). The function request rates

range from 5 to 30 r/m, which we believe is representative for
GPU inference functions as we discuss in §2.

FaaSwap with its policies. To understand the benefits of
FaaSwap’s policies, we use four baselines that disable indi-
vidual policies in FaaSwap. (1) FaaSwap-FIFO uses a FIFO
policy in request queueing compared with our SLO-aware pol-
icy (§5.2). (2) FaaSwap-Random disables interference-aware
scheduling (§5.3), which randomly schedules a request to
an idle GPU if the target model is not loaded, and triggers
model swapping through PCIe. (3) FaaSwap-LRU directly
adopts a LRU policy in model eviction rather than prioritizing
models according to swapping overhead (§5.4). (4) FaaSwap-
Block disables block management policy (§4.4), which simply
caches released memory blocks of various sizes in a single
pool. When model loading requires a new block, it directly
returns a cached one in the pool if the requested size can be
satisfied, otherwise it will free existing idle blocks until the
required memory space is available.

Fig. 8 shows the ratio of SLO-compliance functions using
FaaSwap and four baselines. Compared with FaaSwap, all the
baselines suffer from various limitations and fail to effectively
support a large number of functions. In particular, FaaSwap-
FIFO is oblivious to SLOs and unable to properly prioritize
functions in request queueing, which leads to serious SLO
violations under many functions, such as over 50% of total
560 functions cannot satisfy the SLOs. FaaSwap-Block can-
not reuse various-size blocks and forces frequent memory
allocation via native CUDA API, which incurs long delay
in block allocation and significantly harms overall perfor-
mance as we will describe in Fig. 9. FaaSwap-LRU can easily
evict heavy models and cause PCIe bandwidth contention
during host-to-GPU swapping, the high overhead of which
also degrades the inference performance. Therefore, the func-
tion ratios quickly drop to 0 for both FaaSwap-Block and
FaaSwap-LRU. FaaSwap-Random leads to the worst perfor-
mance due to its inefficient scheduling and swapping policy,
which does not exploits NVLink across GPUs and can cause
more serious PCIe bandwidth contention than FaaSwap-LRU.
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Figure 8: Ratio of SLO-compliance functions under FaaSwap
and various policies.
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Figure 9: Behaviors of FaaSwap’s block management and
eviction policies: latency of block allocation under FaaSwap
and FaaSwap-Block (left), and proportion of three swapping
cases under LRU and FaaSwap’s eviction policies (right).

Consequently, it easily violates SLOs even under 320 func-
tions. Compared with baselines, FaaSwap can successfully
support over 80% functions under 560 functions, effectively
maximizing the number of SLO-compliance functions.
Policy behaviors. Fig. 9 further shows the behaviors of
FaaSwap’s block management and model eviction policies.
In particular, we compare the latency of per-model block
allocation under FaaSwap-Block and FaaSwap (Fig. 9 left).
FaaSwap incurs only negligible overhead due to efficient
block sharing (§4.4), which requires no native GPU mem-
ory allocation. In contrast, FaaSwap-Block can easily trigger
many CUDA allocation calls when swapping models and
thus cause a long delay, e.g., up to hundreds of milliseconds.
Fig. 9 (right) breaks down the proportion of three swapping
cases under FaaSwap-LRU and FaaSwap, which include non-
swapping and host-to-GPU (Swap PCIe) and GPU-to-GPU
(Swap NVLink) swapping. FaaSwap’s eviction policy tends
to keep heavy models in GPUs such as to reduce overall swap-
ping overhead. For example, over 90% of requests to heavy
models incur no host-to-GPU swapping, which effectively
avoids PCIe bandwidth contention. While swapping through
PCIe is required by most requests to light models, this leads
to negligible impact on overall performance (Table 4). On the
other hand, FaaSwap-LRU is oblivious to model knowledge
and thus both light and heavy models observe similar patterns.
SLO-aware request queueing. We next evaluate FaaSwap’s
SLO-aware request queueing policy (§5.2). We compare
FaaSwap with FaaSwap-FIFO under 560 ResNet-152 func-
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Figure 10: Ratio of SLO-compliance functions using FIFO
and FaaSwap’s SLO-aware (SA) policies. We set deadlines
from 60 ms to 80 ms, and vary the targets in SA accordingly.

tions and vary their deadlines from 60 ms to 80 ms. Fig. 10
shows the ratio of SLO-compliance functions using FaaSwap-
FIFO and FaaSwap. FaaSwap’s policy is designed to satisfy
various user-specified SLOs and thus we vary its target dead-
line accordingly, by which FaaSwap adjusts request execution
order to support as many functions as possible. In particular,
SA-60, SA-70, and SA-80 can achieve the best performance
when setting deadlines to 60 ms, 70 ms, and 80 ms, respec-
tively. All of them can significantly outperform FaaSwap-
FIFO in either deadline.

7.3 FaaSwap at Cluster

We next evaluate FaaSwap on a cluster deployment with 6
GPU workers. As running FaaSwap on a FC cluster incurs ad-
ditional system overhead, we relax the SLOs and set deadlines
for CV models and Bert-qa to 150 ms and 250 ms, respec-
tively.
Baselines. We compare FaaSwap with three baselines. (1)
Native uses native GPU containers running on specific GPUs,
which is a common practice in FC. Each GPU worker can
only host a fixed, small number of functions due to limited
GPU memory (§7.1). We perform request-level GPU sharing
in Native, where requests to a GPU are sequentially executed
in a FIFO manner. (2) NonSwap allows GPU remoting similar
to FaaSwap, but disables model swapping. Compared with
Native, NonSwap can share GPU runtime across functions,
and thus reduces memory footprint and enables more models
per GPU. (3) SimpleSwap enables model swapping compared
with NonSwap. Unlike FaaSwap, it only supports simple poli-
cies discussed in §7.2, such as FIFO request queueing, random
scheduling, and LRU model eviction.
Cluster evaluation. Fig. 11 compares the performance of
FaaSwap and three baselines. We first compare the ratio of
SLO-compliance functions when increasing the function num-
ber from 200 to 1200. As shown in Fig. 11a, only FaaSwap
can consistently satisfy per-function latency SLOs under a
large number of functions, e.g., over 1000. In particular, Na-
tive can easily saturate all GPU memory and only supports up
to 500 functions, which leads to low GPU utilization. Com-
pared with Native, NonSwap can relax the constraint of GPU
memory and enables more functions. However, it still fixes
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Figure 11: Cluster evaluation of FaaSwap.

the binding between functions and GPUs, which can cause
a number of GPUs overloaded by requests and lead to long
tail latency. For example, the ratio of SLO-compliance func-
tions under NonSwap dramatically drops from 800 functions.
While SimpleSwap can outperform NonSwap with model
swapping, it still suffers from severe SLO violations under
1000 functions. Since model swapping of SimpleSwap is in-
efficient with high overhead, it can result in long end-to-end
latency.

Fig. 11b further compares the behaviors of FaaSwap, Sim-
pleSwap, and NonSwap under 1000 functions. We show the
per-request latency normalized to corresponding deadlines
(left). In FaaSwap almost every request can be served within
its deadline, leading to a normalized latency less than 1. How-
ever, both SimpleSwap and NonSwap suffer from long tail
latency, which can be over 4× and 7× of the deadline, respec-
tively. We also compare per-worker GPU load of the three
solutions. For each node, we normalize loads of its four GPUs
to the maximum, and calculate the variance. Lower variance
indicates better load balancing. Fig. 11b (right) plots per-
worker load variance under FaaSwap, SimpleSwap and Non-
Swap, where there are 6 workers in each one. Compared with
NonSwap, FaaSwap and SimpleSwap can effectively balance
GPU load across workers with model swapping, achieving
much less load variance.

8 Discussion and Related Work

Large models. Swapping large models can incur consider-
able overhead with long end-to-end latency. Compared with
keeping a full model in GPUs using a large amount of mem-
ory, caching its partial parameters can be more efficient in
model pipeline. We can explore how a large model can be
partly cached in order to navigate the tradeoff between infer-
ence performance and GPU memory cost, which we leave as a
future work. In addition, increasingly popular large language
models, can even exceed the memory capacity of a single
GPU, which requires careful designs of model parallelism
and pipeline [15, 33, 37]. Supporting these models in server-
less cloud can be more challenging, which we will also leave
as a future work.

GPU virtualization. Though in this work we mainly discuss
sharing an entire physical GPU across functions, the design
of model swapping and request-level sharing can be naturally
extended to virtual GPUs. In fact, FC allows users to configure
a function with a proportion of GPU, which is enabled by GPU
virtualization [2, 8–10]. Such techniques can be integrated
into FaaSwap’s GPU server to partition a GPU into multiple
virtual instances, each shared across multiple functions at
request level. This enables much fine-grained GPU sharing,
which is our future work.

Model swapping from local disk. For functions with ex-
tremely low request rates (e.g., a few requests per hour in
Fig. 2), keeping many models in host may even saturate the
memory and still lead to resource inefficiency. Therefore, the
platform can further move those models to local disk, trading
the swapping performance for lower keep-alive cost, which
we leave for a future work.

GPU function snapshotting. Models can serve as snapshots
of inference functions, by that FaaSwap’s model swapping
can also be exploited in function scaling. When a serverless
platform requires launching new instances for a running func-
tion, it can quickly duplicate the model across GPUs through
NVLink, leading to substantially reduced startup latency com-
pared with function cold starts. We leave it as a future work.

Model pipeline. Recent works have also leveraged model
pipeline to reduce inference latency, such as PipeSwitch [14]
and DeepPlan [24]. These works focus on improving infer-
ence performance of individual models, which is orthogonal
to FaaSwap and can be applied to further optimize model
swapping.

Operator-level optimizations. By redirecting CUDA API
calls to the server, FaaSwap obtains the operator-level knowl-
edge when executing a ML model. Recent works have pro-
posed to optimize the execution of operators and GPU ker-
nels, such as operator fusion [16], which can be exploited by
FaaSwap to further speed up model inference.
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9 Conclusion

We present FaaSwap, a GPU-enabled serverless platform
for SLO-aware, resource-efficient model inference. FaaSwap
keeps GPU functions alive in host and supports efficient
model swapping, which can easily enable pay-per-use billing
and efficient GPU sharing across functions. FaaSwap can also
meet latency SLOs for inference functions at low cost with its
scheduling and model management policies. We have imple-
mented FaaSwap atop FC, and evaluations show that FaaSwap
can effectively comply with per-function latency SLOs and
improve GPU efficiency.

A Appendix

A.1 CUDA API

FaaSwap performs asynchronous CUDA API redirection to
reduce communication overhead for efficient GPU remoting
(see §4.2). We divide CUDA APIs into two categories, i.e.,
asynchronous and synchronous APIs, according to whether
they require GPU-to-host data transfer and update state in host.
Table 5 lists the primary CUDA APIs supported in FaaSwap
and their categories. CUDA APIs issued by intermediate steps
during model inference are generally asynchronous.

In addition to listed APIs, model inference can also
trigger a few other CUDA APIs in our experiments, e.g.,
cudaGetDevice. These APIs do not affect inference execu-
tion and thus FaaSwap can cache their results in GPU clients
without repeatedly querying the executor, which further re-
duces communications.

A.2 Auto-configuration in Request Queueing

FaaSwap can automatically configure α based on overall load
such as to maximize the number of SLO-compliance func-
tions per node (see §5.2). Intuitively, when the load is low
and an increasing number of functions can satisfy SLOs, α

should grow to prioritize more functions to enable more SLO-
compliance functions. On the contrary, FaaSwap should be
conservative to prevent functions to violate their SLOs by de-
creasing α when a node is overloaded. Therefore, we propose
an auto-configuration algorithm for α, which is inspired by
TCP congestion control. Algorithm 2 shows the pseudo code,
where scalar and threshold are two parameters to determine
how much and when α should change. We by default set
scalar to 2 and threshold to 0.04, which is able to properly
adjust α according to our profiling.
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